Noticiencias

Blog en Monografias.com

 

Física y Química

Ejemplo de hidráulica. Bachillerato. Autor David Gómez Salas

Ejemplo simplificado de hidráulica. a nivel de Bachillerato.

Educación y cultura, Física y Química

Cinemática 1. Autor David Gómez Salas

Cinemática 1
Autor David Gómez Salas
Guía de estudios
Observar las equivalencias y concluir.
1 kilómetro = 1,000 metros
1 minuto = 60 segundos
1 hora = 60 minutos = (60minutos/hr)(60segundos/min) = 3,600 segundos
1 día = 24 horas = (24 horas/día)(60 minutos/hora) = 1,440 minutos
1día = (1,440 minutos) (60 segundos/minuto) = 84,600 segundos
La idea es que el alumno desarrolle la capacidad de observación, que comprenda con claridad cada problema y deduzca una forma de resolverlo.
Si el alumno resuelve el problema aplicando su lógica, logrará tener seguridad y velocidad para responder correctamente.
El alumno debe tener una idea clara sobre la magnitud de las unidades.
Un kilómetro mide mil metros, por lo tanto no debe dudar un instante que un kilómetro es una longitud mucho mayor a un metro.
Una hora consta de 60 minutos y cada minuto consta de 60 segundos; por lo tanto una hora consta de 3,600 segundos. Quien tiene claro esto no puede dudar un instante que una hora es un tiempo mayor que un segundo.
El objetivo es que el alumno desarrolle habilidades para tener cada día mayor claridad conceptual y para realizar los cálculos más simples con facilidad, casi mentalmente; porque de esta manera  tendrá más tiempo para revisar sus soluciones y asegurarse que no ha cometido alguna equivocación al hacer las operaciones aritméticas o algebraicas.
El alumno podrá tener una idea aproximada de la magnitud esperada en sus cálculos, aún antes de realizarlos. Por ejemplo si un cuerpo se mueve a una velocidad de 9.85 metros por segundo, durante 10.1 segundos, el alumno podrá saber de inmediato que la distancia recorrida es del orden de 98.5 metros (el resultado con mayor precisión es 99.485).  Si el resultado numérico obtenido fuera 985 metros, el alumno se dará cuenta que este valor está fuera del rango de magnitud que tuvo algún error al hacer las operaciones y en consecuencia las revisará.

2. Ejercicios de conversión de unidades

Autor David Gómez Salas

3. Cálculo de  la distancia en el Movimiento Rectilíneo Uniforne (MRU)

Autor David Gómez Salas

4. Cálculo de  la velocidad y el tiempo, en el Movimiento Rectilíneo Uniforme

Autor David Gómez Salas
Los ejercicios anteriores fueron diseñados para que el alumno sea cuidadoso en la consistencia de las unidades. Que maneje las mismas unidades de tiempo y las mismas unidades de longitud al hacer sus cálculos.
Para mostrar al alumno que el Movimiento Rectilíneo Uniforme es concepto muy sencillo, que se representa por la expresión algebraica d = vt (distancia es igual a velocidad por tiempo). Se presentan ejercicios para calcular la velocidad o el tiempo. Encontrar el resultado de la celda vacía, en cuadro siguiente:

5. Ejercicios del MRU que promueven la deducción

Autor David Gómez Salas


Los ejercicios anteriores del MRU están diseñados para que el alumno aprenda a responder rápido. Al tener seguridad en la conversión de unidades y en el concepto  de d= vt. Conociendo dos variables y podrá calcular la variable no conocida mediante una simple multiplicación o división.  Ahora se presentan ejercicios del MRU para que el alumno deduzca el camino para encontrar la solución.

Ejemplo:  Dos autos que se mueven uno hacia el otro, por el m ismo camino.  MRU

El auto 1 sale de la ciudad A a la ciudad B a una velocidad constante de 70 km/hr. El auto 2, sale de la ciudad B a la ciudad A a una velocidad constante de 90  km/hr. La distancia entre las dos ciudades es de 400 km. Ambos autos transitan por la misma carretera, como se representa en la figura  siguiente:

PREGUNTAS:

a. ¿En que tiempo se encuentran los autos?

b. ¿A que distancia de la ciudad A, sucede el encuentro?

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Es evidente la suma de las distancias que recorran los autos para encontrarse debe ser igual a la distancia total, si es menor aún no se encuentran, si es mayor ya se pasaron del punto de encuentro.

¿Cómo se expresa esta condición?

Sea d1 la distancia que recorre el auto 1

Sea d2 la distancia que recorre el auto 2

d1 + d2 = 420 km

De acuerdo al Movimiento Rectilíneo Uniforme, MRU.

Para d1 (distancia que recorre el auto 1) la expresión algebraica es:

d1 = v1t1

Para d2 (distancia que recorre el auto 2) la expresión algebraica es:

d2 = v2t2

Por lo tanto:

d1 + d2 = 400

v1t1 + v2t2 = 400

Otra observación clave para resolver este problema

t1 = t2 Porque los autos salen al mismo tiempo

Así que no son necesarios los subíndices

v1t + v2t = 400

Substituyendo los valores de las velocidades y despejando el tiempo “t”

70t + 90t = 400

160t = 400

t= 400/160 = 2.5 horas

Análisis dimensional

km / (km/hr) = hr

La solución a este ejemplo se presentó paso a paso con la intención mostrar la aplicación de la deducción. Se pide al alumno que no pretenda utilizar la solución presentada como machote o formato para resolver problemas similares, porque no le ayudaría a desarrollar su capacidad de deducción; que es el objetivo de la educación. No vale la pena aplicar un procedimiento mecanizado, que limite el desarrollo de su ingenio.

Una vez determinado que los autos se encuentran después de 2.5 horas de su salida, es muy sencillo responder la segunda pregunta

b. ¿A que distancia de la ciudad A, sucede el encuentro?

El auto 1 hace el recorrido a 70 km/hr, por lo tanto después de 2.5 horas ha recorrido:

d1 = v1t

d1 = (70 km/hr)(2.5hr) = 175 km a partir de la ciudad A.

Para verificar esta respuesta se calcula ¿A que distancia de la ciudad B, sucede el encuentro?

d2 = v2t

d2 = (90 km/hr)(2.5hr) = 225 km a partir de la ciudad B.

Finalmente:

d1 + d2 = 175+225 = 400 km que es la distancia entre las ciudades A y B.



Ejemplo:  Un auto sale en persecución de otro, por la misma ruta.  MRU.

El auto 1 auto sale de la ciudad de Aguascalientes a la ciudad de México, a una velocidad constante de 100 km/hr.

30 minutos más tarde, el auto 2 también sale de la ciudad de Aguascalientes a la ciudad de México, a una velocidad constante de 140 km/hr; por la misma ruta.

En la figura siguiente se representa este problema

Pregunta: Determine en que tiempo en horas, en que el auto 2 alcanza al auto 1.

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Es evidente que para que el auto B alcance al auto A, debe recorrer la misma distancia. si es menor aún no lo alcanza y si es mayor lo habrá rebasado

¿Cómo se expresa esta condición?

Sea d1 la distancia que recorre el auto 1

Sea d2 la distancia que recorre el auto 2

d1 = d2

Otra observación:

El auto 2 inicia la persecución 30 minutos más tarde, por lo que el auto 1, ya ha recorrido 35 km.

d1 = v1t

d1 = (70 km/hr)(0.5hr) = 35 km a partir de la ciudad de Aguascalientes.

Sea t2 el tiempo que tarda el auto 2 en alcanzar al auto 1.

De acuerdo al Movimiento Rectilíneo Uniforme, MRU.

Para d1 (distancia que recorre el auto 1) la expresión algebraica es:

d1 = 35 + v1t2

Para d2 (distancia que recorre el auto 2) la expresión algebraica es:

d2 = v2t2

d1 = d2

35 + v1t2 = v2t2

35 + 70t2 = 90t2

35 = 90t2 - 70t2

35 = 20t2

t2 = 35/20  = 1.75 horas

Para verificar esta respuesta se calcula La distancia de la ciudad de Aguascalientes, en que el auto 2 alcanza al auto 1.

d2 = v2t2

d2 = (90 km/hr)(1.75hr) = 157.5  km a partir de la ciudad de Aguascalientes

Finalmente:

d1 = 35 + v1t2 = 35 + (70 km/hr)(1.75hr) = 35 + 122.5 = 157.5  km a partir de la ciudad de Aguascalientes.

Se comprueba que d1 = d2

Además:

t1 = t2 + 0.5 = 2.25 horas

Entonces:

d1 = v1t1 =  (70 km/hr)(2.25hr) = 157.5  km a partir de la ciudad de Aguascalientes.

La solución queda verificada por dos caminos.

Para contribuir a vincular estos conceptos con la vida cotidiana se elaboraron otros tipo de ejemplos.

Ejemplo del avión veloz

La velocidad de un avión es de 700 Km/hr y la velocidad del sonido es de           340 m/s ¿Es supersónico el avión?

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Qué requisito se debe cumplir?

Se observa que la velocidad del avión y la velocidad del sonido están expresados en unidades diferentes. En consecuencia se procede a expresar la velocidad del sonido en km/hr.

Velocidad del sonido = 340 m/s

Velocidad del sonido = (340n/s)(3,600s/hr)/(1,000m/km)

Velocidad del sonido = 1,224 km/hr ˃ 700.00 km/hr que es la velocidad del avión.

Por lo tanto el avión no es supersónico

Ejemplo de la compra de pan

Luisa sale de su casa y recorre en línea recta 200 metros que la separan de la puerta de su casa a la panadería, lo hace a una velocidad constante de 2 m/s . Permanece en la tienda durante 2 minutos y regresa a casa a una velocidad constante de 4 m/s.

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Se observa que es necesario expresar el tiempo en las mismas unidades, para hacer más explícito el problema.

Sean

t1 = Tiempo que transcurre al ir de la puerta de su casa a la panadería

t2 = Tiempo que permanece en la panadería

t3 = Tiempo que transcurre en regresar de la panadería a la puerta de su casa.

t1 = (200m) / (2m/s) = 100 s

t2 = (2min)(60s/min) = 120 s

t3 = (200m) / (4m/s) = 50 s

t1 + t2 + t3 = 100 + 120 +50 = 270 s

6. Similitud del MRU con otros aspectos de la vida

Autor David Gómez Salas
Ejemplos de similitud del Movimiento Rectilíneo Uniforme con otros aspectos de la vida.
1. En la frutería hay un letrero sobre las manzanas que dice: $10/kg
¿Cuánto debes pagar si compras 2.5 kilogramos de manzana?
El alumno debe deducir cual es la clave para encontrar la similitud
¿Que observa?
Sea la expresión
d = vt; distancia = velocidad x tiempo
Ahora d será la cantidad total de la variable principal
Ahora t será la variable de referencia
Ahora v será la variación de la variable principal “d” por cada unidad de la variable de referencia “t”.
v= $10/kg
t = 2.5 kg
d= vt = ($10/kg) (2.5kg) = $25
Total a pagar = $25.00
2. En la tienda hay un letrero sobre los calcetines que dice: $15/par
¿Cuánto se debe pagar por comprar 3 pares de calcetines?
El alumno debe deducir cual es la clave para encontrar la similitud
¿Que observa?
Igual que en el ejemplo anterior, en la expresión
d = vt
Ahora d será la cantidad total de la variable principal
Ahora t será la variable de referencia
Ahora v será la variación de la variable principal “d” por cada unidad de la variable de referencia “t”.
v= $15/par
t = 3 pares
d= vt = ($15/par) (3 pares) = $45
Total a pagar = $45.00
3.  Con 18 pesos compré 6 paletas (18 pesos por 6 paletas)
¿Cuánto pagué por cada paleta?
Igual que en el ejemplo anterior, en la expresión
d = vt
Ahora d será la cantidad total de la variable principal
Ahora t será la variable de referencia
Ahora v será la variación de la variable principal “d” por cada unidad de la variable de referencia “t”.
d= $18
t = 6 paletas
v= d/t = $18/6paletas = $3/paleta
4. Una paleta pesa 100 gramos
¿Cuánto pesan 6 paletas?
En la expresión d = vt
d es la cantidad total de la variable principal
t es la variable de referencia
v es la variación de la variable principal “d” por cada unidad de la variable de referencia “t”.
v= 100 g/paleta
t = 6 paletas
d= vt = (100g/paleta) (6 paletas) = 600g
d = pesan 600 gramos las 6 paletas
5. Por un billete de 100 dólares me dieron 2,000 pesos
¿Cuánto me dieron por cada dólar?
d= $2,000
t = 100 dólares
v= d/t = $2,000 / 100 dólares = $20/dólar
6. Compré un kilo de arroz con $10.00
¿Cuántos gramos de arroz me dieron por cada peso?
d= 1kg = 1,000g
t = $10
v= d/t = 1,000 g / $10 dólares = $100 g/$
7. Un rollo de papel sanitario que mide 18 metros de largo me costó $9.00
¿Cuánto pagué por cada metro?
d= $9
t = 18 m
v= d/t = $9 / 18 m = $0.5 /m
8. Un señor pintó un muro de 40 metros cuadrados en 5 horas
¿Cuánto tiempo se llevó por cada metro cuadrado?
d= 5 horas
t = 40 m2
v= d/t = 5 horas / 40 m2 = 0.125 hr/m2
¿Observó el alumno que “d” está en horas y “t” está en metros cuadrados?
Este ejemplo muestra la importancia de tener claros los conceptos.
La ecuación d= vt
Puede cambiarse por  y = mx
Para no usar d, t y v en ejemplos de la vida.
9.  Un adulto respira 1,200 veces en una hora
¿Cuánto tiempo dura cada respiración?
d= y = 1 hora = 3,600 segundos
t = x= 1,200 respiraciones
v= m = y / x = 3,600 segundos /1,200 respiraciones
m = 3 segundos / respiración
10. Un rollo de papel sanitario mide 18 metros de largo y tiene 180 hojas
¿Cuánto mide cada hoja a lo largo del rollo?
y = 18 m = 1,800 cm
x = 180 hojas
m = y / x = 1,800 cm / 180 hojas
m = 10 cm  / hoja
Si un alumno siente que alguno de estos problemas pueden ser resueltos de memoria… tiene razón.
11. Un rollo de papel sanitario que mide 18 metros y tiene 180 hojas
¿Cuántas hojas contienen 6 metros?
v = m= 180 hojas/ 18 metros = 10 hojas/m
d = y = (10 hojas/m)(6 m) = 60 hojas
12  Para pintar un muro se requieren en total 40 horas-hombre de trabajo
¿En cuánto tiempo lo pintarán 2 pintores?
y= 40 horas - hombre
y = th
h = 2 hombres
t= y/h =40 hr.hombre / 2 hombres = 20 horas
13. Tres personas pintaron un muro en 20  horas. Trabajando al mismo tiempo.
¿En cuánto tiempo lo pintarán 2 pintores?
y = (20 horas)(3hombres) = 60 horas - hombre
h = 2 hombres
t= y/h =60 hr.hombre / 2 hombres = 30 horas
El alumno podrá observar que una vez desarrollada la habilidad para comprender el problema, podrá encontrar la solución usando la lógica.
14. En la frutería hay un letrero sobre las manzanas que dice: $10/kg
¿Cuántos kilogramos de manzana pueden comprar con 17 pesos?
y = 1 kg
x = $10
m= 1kg/$10 = 0.1 kg/$
y” = (0.1 kg/$) ($17) = 1.7 kg
15. En la tienda hay un letrero sobre los calcetines que dice: $15/par
¿Cuántos pares de calcetines, puede comprar con 75 pesos?
Solución directa, breve:
$75/ ($15.00/par) = 5 pares

7.  Movimiento Circular Uniforme (MCU)

Autor David Gómez Salas
En el Movimiento Circular Uniforme (MUC)  la trayectoria que sigue un objeto es una circunferencia y su velocidad angular es constante.
Velocidad angular constante., significa que recorre ángulos iguales en tiempos iguales. Por ejemplo:  2 radianes por cada segundo, 1,500 revoluciones por minuto, 180° cada 6 horas, etc.
Por convención el ángulo se mide con relación al eje horizontal y en el sentido contrario al que giran las manecillas del reloj. Como se muestra en la figura siguiente:
En esta figura el ángulo se expresa en grados. En total la circunferencia tiene 360 grados, por lo tanto la cuarta parte es de 90°, por eso la figura expresa 90°, 180°, 270° y 360°,
Otra forma de medir el ángulo es en radianes. Un radián es un tramo de la circunferencia cuya longitud es igual a la longitud del radio. Tal como se presenta en la figura siguiente:
Si la longitud de la circunferencia (perímetro) es igual a л veces el diámetro (D), se tiene que:
Perímetro = лD
En virtud que el radio (r) es la mitad del diámetro (D), se tiene que:
D = 2r y por lo tanto.  Perímetro = 2лr
La circunferencia tiene en total 360° = 2л radianes  = 6.2832 rad
En la figura siguiente se muestra que en el perímetro cabe 6 veces el radio y un tramo más, que mide aproximadamente 0.2832 veces el radio.
El ángulo en radianes es igual al cociente que se obtiene al dividir la longitud de un arco de circunferencia, entre el radio.
Ejemplo del péndulo
En el arco descrito por un objeto que cuelga en un péndulo de 2 m de longitud, la longitud del arco mide 30 centímetros, tal como se representa en la figura siguiente:
Calcular el ángulo que describe el movimiento del péndulo. Expresarlo en radianes y en grados.
Arco = L = 30 cm = 0.3 m
radio r = 2 m
Ángulo en radianes = L/r = 0.3/2 = 0.15 rad
Ángulo en grados = (0.15 rad)(360°) / (6.2832rad) = 8.59°
Familiarización con las equivalencias entre radianes y grados.
grados/ radianes = 360°/6.2832 rad = 57.2956°/ rad
radianes/ grados = 6.2832 rad/ 360° = 0.01745333
Conclusión:
Se puede convertir de radianes a grados multiplicando por 360 y dividiendo entre 6.2832 (2л). —— Se puede convertir de grados a radianes multiplicando por 6.2832 (2ᴫ)  y dividiendo entre 360.  Así se construyo el cuadro siguiente:
El alumno debe realizar las conversiones anteriores, para aprender y familiarizarse con las equivalencias entre grados y radianes. No debe intentar memorizar, ni debe intentar imitar lo hizo en otro ejercicio, sin saber lo que está haciendo.

8. Conceptos de desplazamiento y velocidad en el Movimiento Circular Uniforme

Autor David Gómez Salas
El Movimiento Circular Uniforme es muy sencillo ya que su velocidad es constante como lo es el Movimiento Rectilíneo Uniforme.
En MRU: d = vt;    en MCU:  β = ωt
Solo cambian las letras que se usan para representar el desplazamiento y la velocidad; pero el concepto es el mismo.
Desplazamiento en el Movimiento Circula Uniforme (MCU).
Sean las variables siguientes:
β0 = La posición angular del cuerpo en el instante inicial.
β = La posición angular del cuerpo en el instante estudiado.
ω = Velocidad angular del cuerpo. La unidad de medida en el Sistema Internacional (S.I.) es el radián por segundo (rad/s)
Entonces:
Desplazamiento angular
β = β 0 + ωt
Ejemplo del segundero del reloj
Ubicación inicial del segundero (Posición angular del cuerpo en el instante inicial)
β 0  = 12
Como el segundero da una vuelta en 60 segundos.
Velocidad angular = ω = 2ᴫ / 60 s  =  0.10472 radianes/segundo
Para conocer la ubicación del segundero después de 15 segundos, t = 15
Se calcula: β = β 0 + ωt = 12 + 0.10472 x 15 = 1.5708 radianes
Para expresar la posición en grados:
β = 1.5708 radianes = (1.5708 rad) (360°/ 6.1832 rad) = 90°
Tal como se representa en la figura siguiente:
Espacio recorrido en el perímetro
Para un reloj de 10 cm de radio,  r = 0.1m
d = β r = (1.5708 radianes) ( 0.1m) = 0.15708 m
Observar
El perímetro del reloj al filo del segundero =  (6.2832) (0.1m) = 0.62832 m
Por lo tanto β entre el perímetro = 0.15708 m / 0.62832 m = 0.25
Es la cuarta parte del perímetro
25%
Velocidad lineal (v) = velocidad angular (ω) x radio (r).
v = ω r  y los valores son  ω =  0.10472; y r = 0.1m
Substituyendo se tiene: v = (0.10472 rad/s) (0.1m) = 0.010472 m/s
Se puede verificar que d = vt = (0.010472 m/s) (15 s) = 0.15708 m
El mismo resultado obtenido al inicio de este problema.
β= ωt = 0.10472 x 15 = 1.5708 radianes
Se pueden aplicar caminos muy breves o menos breves para resolver este tipo de problemas; todos son sencillos aplicando la lógica.

9. Conceptos de Período y Frecuencia, en el Movimiento Circular Uniforme

Autor David Gómez Salas
De acuerdo a su nombre, el Movimiento Circular Uniforme (MCU) puede ser un movimiento periódico, al dar vueltas el radio sobre una misma circunferencia. Tal como se presenta en las manecillas de un reloj, ruedas de la bicicleta, las aspas de un ventilador o en la rotación de la tierra.
Período.- Así se denomina al tiempo que tarda el cuerpo en dar una vuelta completa. Se representa por la letra P y se mide en unidades de tiempo, como segundos, minutos, horas, días, etc. Su expresión viene dada por:
P = 2π / ω  Por lo tanto     ω = 2πP
2π = Número de veces que cabe el radio en la circunferencia
ω =  Velocidad angular, radianes
Frecuencia.- Así se denomina al número de vueltas que da un cuerpo en una unidad de tiempo como segundos, minutos, horas, días, etc. Se representa por la letra f y la unidad de medida es la inversa del tiempo: revoluciones/minuto (RPM), revoluciones por segundo, etc.
Algebraicamente se puede expresar en la forma siguiente:
f = ω / 2 π
Por ejemplo:  (rad/s) / (rad) = 1/s = s-1
Por lo tanto la frecuencia es la inversa del período.
f = 1 / P
No es necesario el estudio de la Física para comprender el concepto de período, basta con conocer el significado de la palabra en un diccionario. Por ejemplo, el diccionario de la Real Academia Española contiene la definición siguiente:
Del lat. periŏdus, y este del gr. περίοδος períodos.
1. m. Tiempo que algo tarda en volver al estado o posición que tenía al principio.
2. m. Espacio de tiempo que incluye toda la duración de algo.
3. m. Ciclo de tiempo. Período juliano, de Metón.
4. m. Fís. Tiempo que tarda un fenómeno reiterativo en recorrer todas sus fases, como el que emplea un péndulo en su movimiento de vaivén o la Tierra en su movimiento alrededor del Sol, etc.
Se igual manera no es necesario el estudio de la Física para comprender el concepto de frecuencia, basta con conocer el significado de la palabra en un diccionario. Por ejemplo, el diccionario de la Real Academia Española contiene la definición siguiente
Del lat. frequentia.
1. f. Repetición mayor o menor de un acto o de un suceso.
2. f. Número de veces que se repite un proceso periódico por unidad de tiempo. La frecuencia de esta emisora es de tantos kilociclos por segundo.
3. f. Estad. Número de elementos comprendidos dentro de un intervalo en una distribución determinada.
El alumno podrá darse cuenta que es posible aplicar los conceptos de Física, utilizando sus conocimientos del lenguaje y de lógica.
Es lógico que los conceptos de frecuencia y período sólo tienen sentido en los movimientos periódicos que se llevan a cabo con velocidad constante.

10. Ejemplos de movimientos periódicos

Autor David Gómez Salas

El ejemplo del carro de juguete
Un auto de juguete recorre una trayectoria circular de 2 metros de radio sin cambiar su velocidad perimetral y tarda 120 segundos en dar una vuelta
Calcular:
1.- Velocidad angular
2.- Velocidad lineal.
3.- El ángulo descrito 10 segundos
4.- Espacio recorrido en 2 minutos
Cálculos
1.- ω = 2ᴫ radianes / 120 segundos = 0.05235988 rad/s
2.- Velocidad lineal del tren,  en m/s
v = ω r = (0.05235988 rad/s)(2m/rad) = 0.104719 m/s
3.- El ángulo descrito 10 segundos
β= ωt = ( 0.05235988 rad/s)(10) =  0.5235988 radianes
4.- Espacio recorrido en 2 minutos
d = vt = (0.104719 m/s)(120 s) = 12.5664 m
Ejemplo del giro de la rueda
- Una rueda gira a 300 RPM
Calcular:
1.- Velocidad angular “ω”
2.- Velocidad “v” lineal de un punto situado a 2m del centro
Soluciones:
- ¿Cual es la velocidad angular de una rueda de 6 de diámetro, cuando la velocidad lineal en su periferia es de 15 m/s?
Un camino: Lo que recorre linealmente en un segundo dividido entre lo que mide linealmente el perímetro
Otro camino: Lo que recorre angularmente en un segundo dividido entre lo que mide angularmente el circulo.
El ejemplo de la rotación de la tierra
Radio de la tierra: Ecuatorial = 6,378.10 km — Polar = 6,356.80  km
Diámetro de la tierra: Ecuatorial = 12,756.20  km — Polar =  12,713.60 km
Perímetro de la tierra  =  лd 
Ecuatorial =  40,074.78  km
Polar =  39,940.95  km
Velocidad de rotación de la tierra Perímetro / t 
Distancia recorrida en el ecuador 40,074.78  km
Tiempo 24.00 horas
Velocidad perimetral  = 40,074.78 km/24 hr = 1,669.78  km/hr
Velocidad perimetral  = 463.83  m/s
Otro camino de solución:
Se sabe que la tierra da un giro completo en un día o sea en 86,400 segundos, por lo tanto:
Velocidad angular ω = 2л / 86,400 =  7.27221E-05 rad/s
Por lo tanto:
Velocidad perimetral = ωr = 7.27221E-05 x 6,378.10 = 0.46383 km/s
Velocidad perimetral = 463.83  m/s
Se comprueba que se obtiene el mismo resultado.

11. La cinemática y la poesía

Autor David Gómez Salas
La cinemática es una rama de la física dedicada al estudio del movimiento de los cuerpos en el espacio, sin atender a las causas que lo producen.
Es tan lógica la Física que puede expresarse hasta en lenguaje poético. Lo que se aprende de la vida (distancia recorrida) en un periodo de tiempo (tres años de preparatoria) puede ser mucho, porque depende de la intensidad (velocidad) con que se viva.  Por lógica se concluye que también se puede aprender muy poco, si la velocidad de aprendizaje es baja, incluso se puede aprender nada, para el caso en que la velocidad de aprendizaje es cero.
Tiempo de estudiante © David Gómez Salas

Etapa joven, ahora de viejo recuerdo tu paso;
y entre más tiempo pasa, sin querer más te repaso.

Fue mucho y pronto. Yo mismo me convenzo,
porque distancia es velocidad por tiempo.

Periodo intenso y referente, caricia transparente
para ser de la vida, amante. Y en la vida, un eterno estudiante.

Etapa para unir  la alegría y el temple. Para vislumbrar que los tiempos
de amores, cambios y sueños, también lo serán siempre.

12. Conceptos básicos del Movimiento Uniformemente Acelerado (MUA)

Autor David Gómez Salas
En el Movimiento Uniformemente Acelerado (MUA) la velocidad se incrementa en forma constante, a este incremento se le denomina aceleración.
Sean
Vf = Velocidad final
Vi  = Velocidad inicial
a = Aceleración
t = tiempo que transcurre la aceleración
Entonces:
Vf = Vi + at
a = (Vf - Vi) / t
A la velocidad inicial se le suma aceleración por tiempo y se obtiene la velocidad final.  Es todo, porque la física parte de conceptos simples para estudiar incluso procesos complejos, solo se requiere la deducción.
Para que sea un movimiento uniformemente acelerado, la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo. Otra vez el alumno puede ver que para comprender la física basta aplicar sus conocimientos del lenguaje y su sentido común.
Velocidad promedio Vp= (Vf+Vi)/2
d = Velocidad promedio x tiempo =Vpt
Al sustituir el alumno podrá observar como obtener la ecuación de la distancia para el Movimiento Uniformemente Acelerado, MUA.
d = ((Vf + Vi) / 2) t
d = (Vf + Vi)t / 2
d = ((Vi +at) + Vi)t / 2
d = (Vi +at + Vi)t / 2
d = (2Vi +at)t / 2
d = (2Vit +at2) / 2
d = Vit +at2 /2
Si el alumno sabe cálculo integral, el camino es más corto y  es el siguiente:
d= ∫vdt = ∫(Vi +at)dt = Vit+ at2/2
Todas las otras fórmulas que contienen diversos formularios resultarán innecesarias y es posible resolver cualquier problema recordando, como máximo, únicamente las 2 fórmulas siguientes:
Vf = Vi + at
d= Vit+ at2/2

13. Ejemplos sencillos del Movimiento Uniformemente Acelerado, MUA.

Autor David Gómez Salas
El ejemplo más sencillo sería el de obtener la distancia conociendo la velocidad inicial, la aceleración y el tiempo. Y que además todas las variables sean consistentes en sus unidades, es decir que el alumno únicamente tenga que sustituir en una fórmula los valores de la variables y realizar multiplicaciones, divisiones, sumas y restas.
Ejemplo de la caída libre
Se deja caer una piedra desde un balcón ubicado en el piso 20 de una torre habitacional. La altura del punto donde se suelta la piedra al piso de fuera y abajo del edificio es de 60 metros.
1. Calcular la velocidad que alcanza la piedra en  1, 3 y 5 segundos
2. Calcular la velocidad que recorre la piedra en 1, 3 y 5 segundos
Respuestas
Vi = 0
a = 9.81 m/seg2
t = 1, 3 y 5 segundos
1. Velocidades que alcanza la piedra en  1, 3 y 5 segundos
Vf = Vi + at
Vf = 0 + (9.81 m/seg2)(1 seg) =   9.81 m/s
Vf = 0 + (9.81 m/seg2)(3 seg) = 29.43 m/s
Vf = 0 + (9.81 m/seg2)(5 seg) = 49.05  m/s
2. Distancias que recorre la piedra en 1, 3 y 5 segundos
d= Vit+ at2/2
d1= (0 m/s) (1 s) + (9.81 m/seg2 )(12 s2)/2 =    4.905 m
d3= (0 m/s) (3 s) + (9.81 m/seg2 )(32 s2)/2 =  44.145 m
d5= (0 m/s) (5 s) + (9.81 m/seg2 )(52 s2)/2 = 122.625 m
Es evidente que si Vi = 0; entonces Vit = 0 siempre
Por lo tanto, solo es necesario calcular el segundo término de la ecuación:
d= at2/2
d1= (9.81 m/seg2 )(12 s2)/2 =    4.905 m
d3= (9.81 m/seg2 )(32 s2)/2 =  44.145 m
d5= (9.81 m/seg2 )(52 s2)/2 = 122.625 m
d5= 122.625 m; no es posible porque la altura total es de 60 metros y por lo tanto quiere decir que al recorrer 60 metros, la piedra cae al piso y ya no puede recorrer más distancia.
Entonces resulta de interés conocer en que tiempo la piedra recorre 60 metros y cae al piso. d = 60 metros.
La ecuación d= at2/2,  se convierte en: 60 = at2/2; de donde se despeja el tiempo.
(2)(60)/a = t2
(2)(60)/9.81 = t2
12.2324 = t2
t = (12.2324)0.5 =  3.4974 segundos; en este tiempo la piedra llega al piso.
El ejemplo de la velocidad de aprendizaje
Al inicio del un alumno tiene una velocidad de aprendizaje de 4 unidades de aprendizaje por cada hora de clases. El maestro induce a los alumnos que siguen la clase una aceleración de 2 unidades de aprendizaje / hr2. Un alumno desmotivado que perturba las clases, induce a sus compañeros una pérdida en la capacidad de aprendizaje de -0.5 unidades de aprendizaje/ hora2.  El curso tiene una duración de 100 horas.
1. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al maestro.
2. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.
Respuestas:
1. Velocidad de aprendizaje al final del curso del alumno que sigue al maestro.
Vi = 4 unidades de aprendizaje/hr
a = 2 unidades de aprendizaje / hr2
t = 100 horas
Vf = Velocidad final de aprendizaje
Vf = Vi + at
Vf = 4 +(2)(100) = 4 +200 = 204 Unidades de aprendizaje/hr
2. Velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.
Vi = 4 unidades de aprendizaje/hr
a = -1.5 unidades de aprendizaje / hr2
t = 100 horas
Vf = Velocidad final de aprendizaje
Vf = Vi + at
Vf = 4 +(-0.5)(100) = 4 - 50  = - 46  Unidades de aprendizaje/hr
¿Cuánto aprendió el alumno que siguió al maestro?
d= Vit+ at2/2
d = 4(100) + 2(100)2/2
d = 400 + 2(10,000)/2
d= 400 +10,000 = 10,400 unidades de aprendizaje
¿Cuánto aprendió el alumno que siguió al compañero desmotivado?
d= Vit+ at2/2
d = 4(100) + - 0.5(100)2/2
d = 400 - 0.5(10000)/2
d= 400 -2,500 = - 2,100 unidades de aprendizaje
Un alumno puede desarrollar una gran capacidad de aprendizaje si entrena para aprender. Y también puede dejar de adquirir conocimientos, olvidar lo aprendido e incluso perder su capacidad de aprendizaje, sino entrena cotidianamente.

14. Ejemplos del MUA que promueven la deducción

Autor David Gómez Salas
El ejemplo de la persecución en motocicleta
Por una calle de la ciudad circula un automóvil a 100 km/hr, un agente de tránsito observa que el automóvil viene a exceso de velocidad, así que se sube a su motocicleta y arranca justo en el momento que el automóvil pasa por el punto en que él se encuentra.
El auto corre a una velocidad constante de =  108  km/hr
El motociclista inicia la persecución a partir de una velocidad inicial igual a cero y aplica constantemente una aceleración de 1.5 m/s2.  El motociclista se pone en movimiento exactamente en el momento en que pasa el auto frente a él.
Pregunta: 
Determine en que tiempo el motociclista alcanza al automóvil.
El alumno debe deducir cual es la clave para encontrar la solución
¿Que observa?  ¿Que requisito se debe cumplir?
Es evidente que para que el motociclista alcance al automovilista debe recorrer la misma distancia. Si es menor no lo alcanza y si es mayor lo habrá rebasado
¿Cómo se expresa esta condición?
Sea d1 la distancia que recorre el automovilista
Sea d2 la distancia que recorre el motociclista
d1 = d2
Otra observación:
El motociclista 2 inicia la persecución justo al momento que el auto pasa frente él. Así que el auto no recorre distancia alguna antes de que el motociclista inicie su movimiento
Sea t el tiempo que tarda el motociclista en alcanzar al automovilista. De acuerdo al Movimiento Rectilíneo Uniforme, la distancia que recorre el automovilista se expresa en la forma siguiente:
v = 100 km/hr = (108,000 m) / (3600 seg/hr) =  30 m/s
La distancia recorrida por el automovilista se expresa en la forma siguiente:
d1 = vt por lo tanto v = 30t
La distancia que recorre el motociclista, se expresa en la forma siguiente:
d2 = at2/2 por lo tanto d2 = 1.5 t2/2 = 0.75 t2
d1 = d2
30t = 0.75 t2
30 = 0.75 t
t = 30/0.75 = 40 segundos
Para verificar esta respuesta se calcula la distancia que recorre el automovilista y la distancia que recorre el motociclista.
d1 = vt
d1 = (30 m/s)(40 seg) = 1,200 m
d2 = 0.75 t2
d2 = 0.75 (40)2  = 0.75(1,600) = 1,200 m
Se comprueba que d1 = d2
El ejemplo de la manguera
Una manguera de media pulgada de diámetro ubicada a 81  centímetros de altura del piso, descarga agua en dirección horizontal y el agua cae al suelo a una distancia horizontal de 95 centímetros del punto de descarga, Tal como el experimento realizado en la clase de Física.
Determine cuantos litros de agua descargará la manguera en 20 segundos
Datos
h = Altura de la manguera = 81 cm
h = Altura de la manguera = 0.81 m
d = Distancia horizontal al caer el agua = 95 cm
d= Distancia horizontal al caer el agua = 0.95 m
Nomenclatura
h = Altura de la caída libre
h = gt^2/2 
d = Distancia horizontal de la caída del agua
d = vt
g = Aceleración de la gravedad 9.81 m/(seg^2)
v = velocidad horizontal a la que sale de la manguera
t = Tiempo en caer Incógnita
Solución
El alumno debe deducir cual es la clave para encontrar la solución
¿Que observa?  ¿Que requisito se debe cumplir?
Es evidente que una gota de agua recorrerá 81 cm verticalmente por caída libre y 91 cm horizontalmente porque sale de la manguera a velocidad constante, en el mismo tiempo.
¿Cómo se expresa esta condición?
Ecuaciones
Movimiento Rectilíneo Uniforme, la velocidad horizontal del agua en la manguera. Tiempo que tarda en recorrer  91 centímetros.
t1 = d/v 
Movimiento Uniformemente Acelerado, la caída libre del agua. Tiempo que tarda en recorrer 81 cm de altura.
t2 = (2*h/g)^0.5
t1 =  t2
d/v = (2*h/g)^0.5
Despejando v (velocidad horizontal)
d/ ((2*h/g)^0.5) = v
Cálculo de velocidad  horizontal
v = d/ ((2h/g)^0.5)  = 0.91/ ((2*h/g)0.5  = 2.3378 m/s
Caudal de agua Q = vA
v.- Velocidad horizontal del agua que sale de la manguera
A.- Área de la sección circular de la manguera por la que sale el agua
Cálculo del Área de la manguera
Diámetro de la manguera = 0.5 en pulgadas
Diámetro de la manguera = 0.0127 en m
Radio de la manguera = 0.00635 en m
A = Área de la manguera = PI*r^2 = 0.000126677 m2
Cálculo de Q, el caudal que sale de manguera 
Q = vA = (2.3378 m/s )(0.000126677 m2) = 0.000296141 m3/s
Q = Caudal que sale de manguera = 0.2961l/s
En el experimento realizado en clases, se recolectó durante 30 segundos el agua que salió de la manguera en una cubeta.
Calculo del volumen de agua recolectada en 30 segundos
Diámetro de la cubeta = 28.5 = cm
Diámetro de la cubeta = 0.285 m
Radio de la cubeta = 0.1425 m
Radio de la cubeta = 1.425 dm
Área de la base de la cubeta
A = PI*r^2 = 6.3794  dm2
Altura (nivel) del agua en la cubeta = 14 cm
Altura (nivel) del agua en la cubeta = 1.4 dm
Volumen de agua recolectada en la cubeta 
V = A*h = ( 6.3794  dm2)( 1.4 dm)=  8.9312 dm = 38.9312 litros
Cálculo del caudal del agua, a partir del volumen de agua recolectado en la cubeta:
Volumen de agua recolectado = 8.9312 litros
Tiempo de recolección = 30 segundos
Caudal = Volumen recolectado / tiempo de recolección
Caudal = 8.9312 litros / 30 segundos = 0.2977 l/s
La diferencia entre el caudal calculado mediante ecuaciones y el caudal medido experimentalmente es mínima. Se debe a que las condiciones de experimentación no fueron en condiciones perfectamente controladas.
7. Una jabalina sale a una velocidad de (30 + r) m/s con dirección de (30 + r) grados con la horizontal



Pregunta:

Determine la distancia horizontal, en metros, que recorre la jabalina; desde que sale hasta que cae a la misma altura en que fue lanzada por el atleta. Para simplificar el problema asuma las condiciones que se presentan en la figura.
Velocidad inicial = 40.0 m/s
Ángulo con la horizontal φ en grados = 30.0
Cos de φ = 0.8660
Sen de φ =  0.50
Velocidad inicial horizontal
v cos30° = (40)(0.866) = 34.64 m/s
Velocidad inicial vertical
v seno 30° = (40)(0.5) = 20 m/s
La distancia horizontal recorrida se calcula como Movimiento Rectilíneo Uniforme, MRU.
x = 34.64t
Distancia vertical recorrida se calcula como Movimiento Uniformemente Acelerado, MUA.
y = Vit - gt^2/2
El alumno debe deducir cual es la clave para encontrar la solución
¿Que observa?  ¿Que requisito se debe cumplir?
Es evidente que el ascenso de la jabalina es frenado por la fuerza de atracción de la tierra cuya aceleración de la gravedad es 9.81 m/s2.
Así que la velocidad vertical inicial de ascenso de 20 m/s de la jabalina va disminuyendo hasta ser igual a cero, para dejar de subir y empezar a descender (caer).  Lógicamente que al caer alcanzará nuevamente la velocidad  vertical de 20 m/s.
¿Cómo se expresa la condición de que se detiene el ascenso de la Jabalina?
Vf = Vi -gt
0 = 20 - 9.81t
9.8t = 20
t = 20/9.81 = 2.0387 segundos
t = tiempo en que transcurre en detener su ascenso
El tiempo total que tarda la jabalina en el aire es el tiempo de ascenso y descenso, por lo tanto.
t total = 2(2.0387) = 4.0775 segundos
Durante todo este tiempo de ascenso y descenso, la jabalina avanza horizontalmente a una velocidad constante de 34.64 m/s.
x = 34.64t = (34.64) (4.0775) = 141.2478 m
Si se desea conocer la máxima altura que alcanza la jabalina, esta se puede calcular de la manera siguiente:
Un camino es a partir de la caída libre, considerando el tiempo que tarda en caer después de que deja de ascender.
y = gt^2/2  = 9.81(2.03872)/2 = 20.3874 m
Otro camino es a con la fórmula de la distancia, considerando el tiempo que tarda la jabalina en detener su ascenso debido a la fuerza de la gravedad.
y = Vit - gt^2/2 = 20(2.0387) - 9.81(2.03872)/2 = 20.3874 m
Educación y cultura, Física y Química

Cálculo de instalación hidráulica para una casa. Autor David Gómez Salas

Educación y cultura, Física y Química

La química del amor, desde un punto de vista científico

La química del amor, desde un punto de vista científico:

Sobre la atracción sexual y el apego. Noticia publicada el 18 de Marzo de 2013.

En diversas especies animales, las hormonas y los neurotransmisores son esenciales en la atracción sexual, la elección de pareja y el apego, expresó Raúl Paredes Guerrero, director e investigador del Instituto de Neurobiología (INb) de la UNAM.

En humanos, ratones, cabras, cerdos e insectos, hormonas como la oxitocina participan en la elección de pareja y en el apego; mientras que la dopamina, se activa durante la conducta sexual, aunque no hay evidencia de su relación con procesos placenteros en nuestra especie, aclaró.

Ante estudiantes de la Facultad de Química, el científico presentó la charla de divulgación La química del amor, como parte de las actividades del 62° Encuentro de Ciencia, Arte y Humanidades, que se realiza en esa entidad.

Psicólogo, maestro en ciencias biomédicas y doctor en investigación biomédica básica, Paredes Guerrero es especialista en neurobiología de la conducta sexual y en plasticidad cerebral. Estudia, a nivel experimental, la acción de diversas sustancias químicas en el cerebro para lograr estados afectivos positivos.

Feromonas y sistema olfatorio

El sistema olfativo es el primer contacto que muchos animales utilizan para elegir pareja; lo hace por medio de las feromonas, fundamentales en varios procesos relevantes fisiológicos y reproductivos, como la selección de pareja y la identificación de las crías.

Son sustancias químicas liberadas por un individuo que producen una respuesta fisiológica y conductual en un miembro de la misma especie.

También, “son fundamentales para la comunicación en diversos aspectos de muchas especies animales. Una de las más estudiadas es el Bombykol, que libera la hembra del gusano de seda, y que un macho puede detectar hasta a 10 kilómetros de distancia”, explicó.

El sistema olfatorio, es fundamental para que cabras y borregas reconozcan a sus crías si están en grupo, algo que se demostró en un experimento en el que, al dañar los receptores del olfato, ellas no pudieron reconocer a sus crías.

“En los humanos no se ha identificado la fórmula química de ninguna feromona, sólo se conocen en insectos, en roedores y alguna que otra especie, así que las que se venden como sustancias comerciales para humanos, si tienen algún efecto, el placebo”, precisó.

La falacia de la dopamina

Desde la década de 1960 se asoció a la dopamina con muchos procesos placenteros, pero eso es una falacia, aclaró Paredes Guerrero.

Es un neurotransmisor involucrado en la actividad locomotora y sexual, en la comunicación neuro-endocrina y en la ingesta de agua y alimentos.

“Se relaciona con enfermedades como la esquizofrenia, el mal de Parkinson y la adicción a las drogas, y también aumenta si existe estrés o una pelea. Sin embargo, no hay evidencia concluyente de que esté involucrada en procesos placenteros y parece estar más relacionada con la activación general del sistema nervioso central”.

En tanto, la oxitocina está vinculada con patrones sexuales y conducta maternal. “Se activa para seleccionar pareja, se relaciona con el apego y en humanos aumenta la confianza”, acotó.

Asimismo, los opioides son sustancias que producen estados placenteros y aseguran que la conducta se vuelva a repetir.

“Se han estudiado en muchos animales y también en el humano. Se sabe que durante la actividad sexual aumenta el umbral del dolor, proceso que parece estar mediado por los opioides en nuestra especie”,

FUENTE: Boletín UNAM-DGCS-151 Ciudad Universitaria. 9 de marzo de 2013

Educación y cultura, Física y Química, Salud, Social, Política y economía, filosofía

Cinemática 14. Ejemplos del MUA que promueven la deducción. © David Gómez Salas

14. Ejemplos del MUA que promueven la deducción

El ejemplo de la persecución en motocicleta

Por una calle de la ciudad circula un automóvil a 100 km/hr, un agente de tránsito observa que el automóvil viene a exceso de velocidad, así que se sube a su motocicleta y arranca justo en el momento que el automóvil pasa por el punto en que él se encuentra.

El auto corre a una velocidad constante de =  108 km/hr

El motociclista inicia la persecución a partir de una velocidad inicial igual a cero y aplica constantemente una aceleración de 1.5 m/s2.  El motociclista se pone en movimiento exactamente en el momento en que pasa el auto frente a él.

Pregunta:

Determine en que tiempo el motociclista alcanza al automóvil.

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Es evidente que para que el motociclista alcance al automovilista debe recorrer la misma distancia. Si es menor no lo alcanza y si es mayor lo habrá rebasado

¿Cómo se expresa esta condición?

Sea d1 la distancia que recorre el automovilista

Sea d2 la distancia que recorre el motociclista

d1 = d2

Otra observación:

El motociclista 2 inicia la persecución justo al momento que el auto pasa frente él. Así que el auto no recorre distancia alguna antes de que el motociclista inicie su movimiento

Sea t el tiempo que tarda el motociclista en alcanzar al automovilista. De acuerdo al Movimiento Rectilíneo Uniforme, la distancia que recorre el automovilista se expresa en la forma siguiente:

v = 100 km/hr = (108,000 m) / (3600 seg/hr) =  30 m/s

La distancia recorrida por el automovilista se expresa en la forma siguiente:

d1 = vt por lo tanto v = 30t

La distancia que recorre el motociclista, se expresa en la forma siguiente:

d2 = at2/2 por lo tanto d2 = 1.5 t2/2 = 0.75 t2

d1 = d2

30t = 0.75 t2

30 = 0.75 t

t = 30/0.75 = 40 segundos

Para verificar esta respuesta se calcula la distancia que recorre el automovilista y la distancia que recorre el motociclista.

d1 = vt

d1 = (30 m/s)(40 seg) = 1,200 m

d2 = 0.75 t2

d2 = 0.75 (40)2 = 0.75(1,600) = 1,200 m

Se comprueba que d1 = d2

El ejemplo de la manguera

Una manguera de media pulgada de diámetro ubicada a 81  centímetros de altura del piso, descarga agua en dirección horizontal y el agua cae al suelo a una distancia horizontal de 95 centímetros del punto de descarga, Tal como el experimento realizado en la clase de Física.

h = 81 cm

d = 91 cm

Determine cuantos litros de agua descargará la manguera en 20 segundos

Datos

h = Altura de la manguera = 81   cm

h = Altura de la manguera = 0.81 m

d = Distancia horizontal al caer el agua = 95 cm

d= Distancia horizontal al caer el agua = 0.95 m

Nomenclatura

h = Altura de la caída libre

h = gt^2/2

d = Distancia horizontal de la caída del agua

d = vt

g = Aceleración de la gravedad   9.81   m/(seg^2)

v = velocidad horizontal a la que sale de la manguera

t = Tiempo en caer Incógnita

Solución

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Es evidente que una gota de agua recorrerá 81 cm verticalmente por caída libre y 91 cm horizontalmente porque sale de la manguera a velocidad constante, en el mismo tiempo.

¿Cómo se expresa esta condición?

Ecuaciones

Movimiento Rectilíneo Uniforme, la velocidad horizontal del agua en la manguera. Tiempo que tarda en recorrer  91 centímetros.

t1 = d/v

Movimiento Uniformemente Acelerado, la caída libre del agua. Tiempo que tarda en recorrer 81 cm de altura.

t2 = (2*h/g)^0.5

t1 =  t2

d/v = (2*h/g)^0.5

Despejando v (velocidad horizontal)

d/ ((2*h/g)^0.5) = v

Cálculo de velocidad  horizontal

v = d/ ((2h/g)^0.5)   = 0.91/ ((2*h/g)0.5 = 2.3378 m/s

Caudal de agua Q = vA

v.- Velocidad horizontal del agua que sale de la manguera

A.- Área de la sección circular de la manguera por la que sale el agua

Cálculo del Área de la manguera

Diámetro de la manguera  = 0.5 en pulgadas

Diámetro de la manguera = 0.0127 en m

Radio de la manguera = 0.00635 en m

A = Área de la manguera = PI*r^2 = 0.000126677 m2

Cálculo de Q, el caudal que sale de manguera

Q = vA = (2.3378 m/s )(0.000126677 m2) = 0.000296141   m3/s

Q = Caudal que sale de manguera = 0.2961l/s

En el experimento realizado en clases, se recolectó durante 30 segundos el agua que salió de la manguera en una cubeta.

Calculo del volumen de agua recolectada en 30 segundos

Diámetro de la cubeta = 28.5 = cm

Diámetro de la cubeta = 0.285 m

Radio de la cubeta  = 0.1425 m

Radio de la cubeta  = 1.425 dm

Área de la base de la cubeta

A = PI*r^2 = 6.3794  dm2

Altura (nivel) del agua en la cubeta = 14 cm

Altura (nivel) del agua en la cubeta = 1.4 dm

Volumen de agua recolectada en la cubeta

V = A*h = ( 6.3794  dm2)( 1.4 dm)=  8.9312 dm = 38.9312 litros

Cálculo del caudal del agua, a partir del volumen de agua recolectado en la cubeta:

Volumen de agua recolectado = 8.9312 litros

Tiempo de recolección = 30 segundos

Caudal = Volumen recolectado / tiempo de recolección

Caudal = 8.9312 litros / 30 segundos = 0.2977 l/s

La diferencia entre el caudal calculado mediante ecuaciones y el caudal medido experimentalmente es mínima. Se debe a que las condiciones de experimentación no fueron en condiciones perfectamente controladas.

7. Una jabalina sale a una velocidad de 40 m/s con dirección de 30 grados con la horizontal

d = distancia en x

Velocidad inicial

= 40 m/s

φ = Ángulo de 30°

con la horizontal

Pregunta:

Determine la distancia horizontal, en metros, que recorre la jabalina; desde que sale hasta que cae a la misma altura en que fue lanzada por el atleta. Para simplificar el problema asuma las condiciones que se presentan en la figura.

Velocidad inicial = 40.0 m/s

Ángulo con la horizontal φ en grados = 30.0

Cos de φ = 0.8660

Sen de φ =   0.50

Velocidad inicial horizontal

v cos30° = (40)(0.866) = 34.64 m/s

Velocidad inicial vertical

v seno 30° = (40)(0.5) = 20 m/s

La distancia horizontal recorrida se calcula como Movimiento Rectilíneo Uniforme, MRU.

x = 34.64t

Distancia vertical recorrida se calcula como Movimiento Uniformemente Acelerado, MUA.

y = Vit - gt^2/2

El alumno debe deducir cual es la clave para encontrar la solución

¿Que observa?  ¿Que requisito se debe cumplir?

Es evidente que el ascenso de la jabalina es frenado por la fuerza de atracción de la tierra cuya aceleración de la gravedad es 9.81 m/s2.

Así que la velocidad vertical inicial de ascenso de 20 m/s de la jabalina va disminuyendo hasta ser igual a cero, para dejar de subir y empezar a descender (caer).  Lógicamente que al caer alcanzará nuevamente la velocidad  vertical de 20 m/s.

¿Cómo se expresa la condición de que se detiene el ascenso de la Jabalina?

Vf = Vi -gt

0 = 20 - 9.81t

9.8t = 20

t = 20/9.81 = 2.0387 segundos

t = tiempo en que transcurre en detener su ascenso

El tiempo total que tarda la jabalina en el aire es el tiempo de ascenso y descenso, por lo tanto.

t total = 2(2.0387) = 4.0775 segundos

Durante todo este tiempo de ascenso y descenso, la jabalina avanza horizontalmente a una velocidad constante de 34.64 m/s.

x = 34.64t = (34.64) (4.0775) = 141.2478 m

Si se desea conocer la máxima altura que alcanza la jabalina, esta se puede calcular de la manera siguiente:

Un camino es a partir de la caída libre, considerando el tiempo que tarda en caer después de que deja de ascender.

y = gt^2/2  = 9.81(2.03872)/2 = 20.3874 m

Otro camino es a con la fórmula de la distancia, considerando el tiempo que tarda la jabalina en detener su ascenso debido a la fuerza de la gravedad.

y = Vit - gt^2/2 = 20(2.0387) - 9.81(2.03872)/2 = 20.3874 m

Física y Química, Matemáticas

Cinemática 13. Ejemplos sencillos del Movimiento Uniformemente Acelerado, MUA. © David Gómez Salas

13. Ejemplos sencillos del Movimiento Uniformemente Acelerado, MUA.

El ejemplo más sencillo sería el de obtener la distancia conociendo la velocidad inicial, la aceleración y el tiempo. Y que además todas las variables sean consistentes en sus unidades, es decir que el alumno únicamente tenga que sustituir en una fórmula los valores de la variables y realizar multiplicaciones, divisiones, sumas y restas.

Ejemplo de la caída libre

Se deja caer una piedra desde un balcón ubicado en el piso 20 de una torre habitacional. La altura del punto donde se suelta la piedra al piso de fuera y abajo del edificio es de 60 metros.

1. Calcular la velocidad que alcanza la piedra en  1, 3 y 5 segundos

2. Calcular la velocidad que recorre la piedra en 1, 3 y 5 segundos

Respuestas

Vi = 0

a = 9.81 m/seg2

t = 1, 3 y 5 segundos

1. Velocidades que alcanza la piedra en  1, 3 y 5 segundos

Vf = Vi + at

Vf = 0 + (9.81 m/seg2)(1 seg) =   9.81 m/s

Vf = 0 + (9.81 m/seg2)(3 seg) = 29.43 m/s

Vf = 0 + (9.81 m/seg2)(5 seg) = 49.05  m/s

2. Distancias que recorre la piedra en 1, 3 y 5 segundos

d= Vit+ at2/2

d1= (0 m/s) (1 s) + (9.81 m/seg2 )(12 s2)/2 =    4.905 m

d3= (0 m/s) (3 s) + (9.81 m/seg2 )(32 s2)/2 =  44.145 m

d5= (0 m/s) (5 s) + (9.81 m/seg2 )(52 s2)/2 = 122.625 m

Es evidente que si Vi = 0; entonces Vit = 0 siempre

Por lo tanto, solo es necesario calcular el segundo término de la ecuación:

d= at2/2

d1= (9.81 m/seg2 )(12 s2)/2 =    4.905 m

d3= (9.81 m/seg2 )(32 s2)/2 =  44.145 m

d5= (9.81 m/seg2 )(52 s2)/2 = 122.625 m

d5= 122.625 m; no es posible porque la altura total es de 60 metros y por lo tanto quiere decir que al recorrer 60 metros, la piedra cae al piso y ya no puede recorrer más distancia.

Entonces resulta de interés conocer en que tiempo la piedra recorre 60 metros y cae al piso. d = 60 metros.

La ecuación d= at2/2,  se convierte en: 60 = at2/2; de donde se despeja el tiempo.

(2)(60)/a = t2

(2)(60)/9.81 = t2

12.2324 = t2

t = (12.2324)0.5 =  3.4974 segundos; en este tiempo la piedra llega al piso.

El ejemplo de la velocidad de aprendizaje

Al inicio del un alumno tiene una velocidad de aprendizaje de 4 unidades de aprendizaje por cada hora de clases. El maestro induce a los alumnos que siguen la clase una aceleración de 2 unidades de aprendizaje / hr2. Un alumno desmotivado que perturba las clases, induce a sus compañeros una pérdida en la capacidad de aprendizaje de -0.5 unidades de aprendizaje/ hora2.  El curso tiene una duración de 100 horas.

1. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al maestro.

2. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.

Respuestas:

1. Velocidad de aprendizaje al final del curso del alumno que sigue al maestro.

Vi = 4 unidades de aprendizaje/hr

a = 2 unidades de aprendizaje / hr2

t = 100 horas

Vf = Velocidad final de aprendizaje

Vf = Vi + at

Vf = 4 +(2)(100) = 4 +200 = 204 Unidades de aprendizaje/hr

2. Velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.

Vi = 4 unidades de aprendizaje/hr

a = -1.5 unidades de aprendizaje / hr2

t = 100 horas

Vf = Velocidad final de aprendizaje

Vf = Vi + at

Vf = 4 +(-0.5)(100) = 4 - 50  = - 46  Unidades de aprendizaje/hr

¿Cuánto aprendió el alumno que siguió al maestro?

d= Vit+ at2/2

d = 4(100) + 2(100)2/2

d = 400 + 2(10,000)/2

d= 400 +10,000 = 10,400 unidades de aprendizaje

¿Cuánto aprendió el alumno que siguió al compañero desmotivado?

d= Vit+ at2/2

d = 4(100) + - 0.5(100)2/2

d = 400 - 0.5(10000)/2

d= 400 -2,500 = - 2,100 unidades de aprendizaje

Un alumno puede desarrollar una gran capacidad de aprendizaje si entrena para aprender. Y también puede dejar de adquirir conocimientos, olvidar lo aprendido e incluso perder su capacidad de aprendizaje, sino entrena cotidianamente.

Física y Química, Matemáticas

Cinemática 12. Conceptos básicos del Movimiento Uniformemente Acelerado (MUA). © David Gómez Salas

12. Conceptos básicos del Movimiento Uniformemente Acelerado (MUA)

En el Movimiento Uniformemente Acelerado (MUA) la velocidad se incrementa en forma constante, a este incremento se le denomina aceleración.

Sean

Vf = Velocidad final

Vi = Velocidad inicial

a = Aceleración

t = tiempo que transcurre la aceleración

Entonces:

Vf = Vi + at

a = (Vf - Vi) / t

A la velocidad inicial se le suma aceleración por tiempo y se obtiene la velocidad final.  Es todo, porque la física parte de conceptos simples para estudiar incluso procesos complejos, solo se requiere la deducción.

Para que sea un movimiento uniformemente acelerado, la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo. Otra vez el alumno puede ver que para comprender la física basta aplicar sus conocimientos del lenguaje y su sentido común.

Velocidad promedio Vp= (Vf+Vi)/2

d = Velocidad promedio x tiempo =Vpt

Al sustituir el alumno podrá observar como obtener la ecuación de la distancia para el Movimiento Uniformemente Acelerado, MUA.

d = ((Vf + Vi) / 2) t

d = (Vf + Vi)t / 2

d = ((Vi +at) + Vi)t / 2

d = (Vi +at + Vi)t / 2

d = (2Vi +at)t / 2

d = (2Vit +at2) / 2

d = Vit +at2 /2

Si el alumno sabe cálculo integral, el camino es más corto y  es el siguiente:

d= ∫vdt = ∫(Vi +at)dt = Vit+ at2/2

Todas las otras fórmulas que contienen diversos formularios resultarán innecesarias y es posible resolver cualquier problema recordando, como máximo, únicamente las 2 fórmulas siguientes:

Vf = Vi + at

d= Vit+ at2/2

Física y Química, Matemáticas

Cinemática 11. La cinemática y la poesía. © David Gómez Salas

11. La cinemática y la poesía

La cinemática es una rama de la física dedicada al estudio del movimiento de los cuerpos en el espacio, sin atender a las causas que lo producen.

Es tan lógica la Física que puede expresarse hasta en lenguaje poético. Lo que se aprende de la vida (distancia recorrida) en un periodo de tiempo (tres años de preparatoria) puede ser mucho, porque depende de la intensidad (velocidad) con que se viva.  Por lógica se concluye que también se puede aprender muy poco, si la velocidad de aprendizaje es baja, incluso se puede aprender nada, para el caso en que la velocidad de aprendizaje es cero.

Tiempo de estudiante © David Gómez Salas

Etapa joven, el bachillerato, recuerdo tu paso;

y entre más tiempo pasa, sin querer más te repaso.

Fue mucho y pronto. Yo mismo me convenzo,

porque distancia es velocidad por tiempo.

Periodo intenso y referente, caricia transparente

para ser de la vida, amante. Y en la vida, un eterno estudiante.

Etapa para unir  la alegría y el temple. Para vislumbrar que los tiempos

de amores, cambios y sueños, también lo serán siempre.

Física y Química, Matemáticas

Cinemática 9. Conceptos de Período y Frecuencia, en el Movimiento Circular Uniforme. © David Gómez Salas

9. Conceptos de Período y Frecuencia, en el Movimiento Circular Uniforme

De acuerdo a su nombre, el Movimiento Circular Uniforme (MCU) puede ser un movimiento periódico, al dar vueltas el radio sobre una misma circunferencia. Tal como se presenta en las manecillas de un reloj, ruedas de la bicicleta, las aspas de un ventilador o en la rotación de la tierra.

Período.- Así se denomina al tiempo que tarda el cuerpo en dar una vuelta completa. Se representa por la letra P y se mide en unidades de tiempo, como segundos, minutos, horas, días, etc. Su expresión viene dada por:

P = 2π / ω  Por lo tanto     ω = 2πP

2π = Número de veces que cabe el radio en la circunferencia

ω =  Velocidad angular, radianes

Frecuencia.- Así se denomina al número de vueltas que da un cuerpo en una unidad de tiempo como segundos, minutos, horas, días, etc. Se representa por la letra f y la unidad de medida es la inversa del tiempo: revoluciones/minuto (RPM), revoluciones por segundo, etc.

Algebraicamente se puede expresar en la forma siguiente:

f = ω / 2 π

Por ejemplo:  (rad/s) / (rad) = 1/s = s-1

Por lo tanto la frecuencia es la inversa del período.

f = 1 / P

No es necesario el estudio de la Física para comprender el concepto de período, basta con conocer el significado de la palabra en un diccionario. Por ejemplo, el diccionario de la Real Academia Española contiene la definición siguiente:

Del lat. periŏdus, y este del gr. περίοδος períodos.

1. m. Tiempo que algo tarda en volver al estado o posición que tenía al principio.

2. m. Espacio de tiempo que incluye toda la duración de algo.

3. m. Ciclo de tiempo. Período juliano, de Metón.

4. m. Fís. Tiempo que tarda un fenómeno reiterativo en recorrer todas sus fases, como el que emplea un péndulo en su movimiento de vaivén o la Tierra en su movimiento alrededor del Sol, etc.

Se igual manera no es necesario el estudio de la Física para comprender el concepto de frecuencia, basta con conocer el significado de la palabra en un diccionario. Por ejemplo, el diccionario de la Real Academia Española contiene la definición siguiente

Del lat. frequentia.

1. f. Repetición mayor o menor de un acto o de un suceso.

2. f. Número de veces que se repite un proceso periódico por unidad de tiempo. La frecuencia de esta emisora es de tantos kilociclos por segundo.

3. f. Estad. Número de elementos comprendidos dentro de un intervalo en una distribución determinada.

El alumno podrá darse cuenta que es posible aplicar los conceptos de Física, utilizando sus conocimientos del lenguaje y de lógica.

Es lógico que los conceptos de frecuencia y período sólo tienen sentido en los movimientos periódicos que se llevan a cabo con velocidad constante.

Física y Química, Matemáticas

Cinemática 8. Desplazamiento y velocidad en el Movimiento Circular Uniforme. © David Gómez Salas

8. Conceptos de desplazamiento y velocidad en el Movimiento Circular Uniforme

El Movimiento Circular Uniforme es muy sencillo ya que su velocidad es constante como lo es el Movimiento Rectilíneo Uniforme.

En MRU: d = vt;    en MCU:  β = ωt

Solo cambian las letras que se usan para representar el desplazamiento y la velocidad; pero el concepto es el mismo.

Desplazamiento en el Movimiento Circula Uniforme (MCU).

Sean las variables siguientes:

β0 = La posición angular del cuerpo en el instante inicial.

β = La posición angular del cuerpo en el instante estudiado.

ω = Velocidad angular del cuerpo. La unidad de medida en el Sistema Internacional (S.I.) es el radián por segundo (rad/s)

Entonces:

Desplazamiento angular

β = β 0 + ωt

Ejemplo del segundero del reloj

Ubicación inicial del segundero (Posición angular del cuerpo en el instante inicial)

β 0 = 12

Como el segundero da una vuelta en 60 segundos.

Velocidad angular = ω = 2ᴫ / 60 s  = 0.10472 radianes/segundo

Para conocer la ubicación del segundero después de 15 segundos, t = 15

Se calcula: β = β 0 + ωt = 12 + 0.10472 x 15 = 1.5708 radianes

Para expresar la posición en grados:

β = 1.5708 radianes = (1.5708 rad) (360°/ 6.1832 rad) = 90°

Tal como se representa en la figura siguiente:

Espacio recorrido en el perímetro

Para un reloj de 10 cm de radio,  r = 0.1m

d = β r = (1.5708 radianes) ( 0.1m) = 0.15708 m

Observar

El perímetro del reloj al filo del segundero =  (6.2832) (0.1m) = 0.62832 m

Por lo tanto β entre el perímetro = 0.15708 m / 0.62832 m = 0.25

Es la cuarta parte del perímetro

25%

Velocidad lineal (v)  = velocidad angular (ω) x radio (r).

v = ω r  y los valores son  ω = 0.10472; y r = 0.1m

Substituyendo se tiene: v = (0.10472 rad/s) (0.1m) = 0.010472 m/s

Se puede verificar que d = vt = (0.010472 m/s) (15 s) = 0.15708 m

El mismo resultado obtenido al inicio de este problema.

β= ωt = 0.10472 x 15 = 1.5708 radianes

Se pueden aplicar caminos muy breves o menos breves para resolver este tipo de problemas; todos son sencillos aplicando la lógica.

Física y Química, Matemáticas
chatroulette chatrandom

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda