Noticiencias

Blog en Monografias.com

 

Cinemática 13. Ejemplos sencillos del Movimiento Uniformemente Acelerado, MUA. © David Gómez Salas

13. Ejemplos sencillos del Movimiento Uniformemente Acelerado, MUA.

El ejemplo más sencillo sería el de obtener la distancia conociendo la velocidad inicial, la aceleración y el tiempo. Y que además todas las variables sean consistentes en sus unidades, es decir que el alumno únicamente tenga que sustituir en una fórmula los valores de la variables y realizar multiplicaciones, divisiones, sumas y restas.

Ejemplo de la caída libre

Se deja caer una piedra desde un balcón ubicado en el piso 20 de una torre habitacional. La altura del punto donde se suelta la piedra al piso de fuera y abajo del edificio es de 60 metros.

1. Calcular la velocidad que alcanza la piedra en  1, 3 y 5 segundos

2. Calcular la velocidad que recorre la piedra en 1, 3 y 5 segundos

Respuestas

Vi = 0

a = 9.81 m/seg2

t = 1, 3 y 5 segundos

1. Velocidades que alcanza la piedra en  1, 3 y 5 segundos

Vf = Vi + at

Vf = 0 + (9.81 m/seg2)(1 seg) =   9.81 m/s

Vf = 0 + (9.81 m/seg2)(3 seg) = 29.43 m/s

Vf = 0 + (9.81 m/seg2)(5 seg) = 49.05  m/s

2. Distancias que recorre la piedra en 1, 3 y 5 segundos

d= Vit+ at2/2

d1= (0 m/s) (1 s) + (9.81 m/seg2 )(12 s2)/2 =    4.905 m

d3= (0 m/s) (3 s) + (9.81 m/seg2 )(32 s2)/2 =  44.145 m

d5= (0 m/s) (5 s) + (9.81 m/seg2 )(52 s2)/2 = 122.625 m

Es evidente que si Vi = 0; entonces Vit = 0 siempre

Por lo tanto, solo es necesario calcular el segundo término de la ecuación:

d= at2/2

d1= (9.81 m/seg2 )(12 s2)/2 =    4.905 m

d3= (9.81 m/seg2 )(32 s2)/2 =  44.145 m

d5= (9.81 m/seg2 )(52 s2)/2 = 122.625 m

d5= 122.625 m; no es posible porque la altura total es de 60 metros y por lo tanto quiere decir que al recorrer 60 metros, la piedra cae al piso y ya no puede recorrer más distancia.

Entonces resulta de interés conocer en que tiempo la piedra recorre 60 metros y cae al piso. d = 60 metros.

La ecuación d= at2/2,  se convierte en: 60 = at2/2; de donde se despeja el tiempo.

(2)(60)/a = t2

(2)(60)/9.81 = t2

12.2324 = t2

t = (12.2324)0.5 =  3.4974 segundos; en este tiempo la piedra llega al piso.

El ejemplo de la velocidad de aprendizaje

Al inicio del un alumno tiene una velocidad de aprendizaje de 4 unidades de aprendizaje por cada hora de clases. El maestro induce a los alumnos que siguen la clase una aceleración de 2 unidades de aprendizaje / hr2. Un alumno desmotivado que perturba las clases, induce a sus compañeros una pérdida en la capacidad de aprendizaje de -0.5 unidades de aprendizaje/ hora2.  El curso tiene una duración de 100 horas.

1. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al maestro.

2. Calcular la velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.

Respuestas:

1. Velocidad de aprendizaje al final del curso del alumno que sigue al maestro.

Vi = 4 unidades de aprendizaje/hr

a = 2 unidades de aprendizaje / hr2

t = 100 horas

Vf = Velocidad final de aprendizaje

Vf = Vi + at

Vf = 4 +(2)(100) = 4 +200 = 204 Unidades de aprendizaje/hr

2. Velocidad de aprendizaje al final del curso, del alumno que sigue al compañero desmotivado que perturba las clases.

Vi = 4 unidades de aprendizaje/hr

a = -1.5 unidades de aprendizaje / hr2

t = 100 horas

Vf = Velocidad final de aprendizaje

Vf = Vi + at

Vf = 4 +(-0.5)(100) = 4 - 50  = - 46  Unidades de aprendizaje/hr

¿Cuánto aprendió el alumno que siguió al maestro?

d= Vit+ at2/2

d = 4(100) + 2(100)2/2

d = 400 + 2(10,000)/2

d= 400 +10,000 = 10,400 unidades de aprendizaje

¿Cuánto aprendió el alumno que siguió al compañero desmotivado?

d= Vit+ at2/2

d = 4(100) + - 0.5(100)2/2

d = 400 - 0.5(10000)/2

d= 400 -2,500 = - 2,100 unidades de aprendizaje

Un alumno puede desarrollar una gran capacidad de aprendizaje si entrena para aprender. Y también puede dejar de adquirir conocimientos, olvidar lo aprendido e incluso perder su capacidad de aprendizaje, sino entrena cotidianamente.

Física y Química, Matemáticas

Si le ha gustado esta entrada, por favor considere dejar un comentario o suscríbase al feed y reciba las actualizaciones regularmente.


Deje su comentario

Debe para dejar un comentario.

chatroulette chatrandom

Iniciar sesión

Ingrese el e-mail y contraseña con el que está registrado en Monografias.com

   
 

Regístrese gratis

¿Olvidó su contraseña?

Ayuda